Sequential Monte Carlo samplers for Bayesian DSGE models

نویسنده

  • Drew Creal
چکیده

Bayesian estimation of DSGE models typically uses Markov chain Monte Carlo as importance sampling (IS) algorithms have a difficult time in high-dimensional spaces. I develop improved IS algorithms for DSGE models using recent advances in Monte Carlo methods known as sequential Monte Carlo samplers. Sequential Monte Carlo samplers are a generalization of particle filtering designed for full simulation of all parameters from the posterior. I build two separate algorithms; one for sequential Bayesian estimation and a second which performs batch estimation. The sequential Bayesian algorithm provides a new method for inspecting the time variation and stability of DSGE models. The posterior distribution of the DSGE model considered here changes substantially over time. In addition, the algorithm is a method for implementing Bayesian updating of the posterior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models

This paper proposes a new efficient merge-split sampler for both conjugate and nonconjugate Dirichlet process mixture (DPM) models. These Bayesian nonparametric models are usually fit usingMarkov chain Monte Carlo (MCMC) or sequential importance sampling (SIS). The latest generation of Gibbs and Gibbs-like samplers for both conjugate and nonconjugate DPM models effectively update the model para...

متن کامل

Sequential Monte Carlo Samplers

In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...

متن کامل

Inference for Lévy Driven Stochastic Volatility Models Via Adaptive Sequential Monte Carlo

In the following paper we investigate simulation methodology for Bayesian inference in Lévy driven SV models. Typically, Bayesian inference from such statistical models is performed using Markov chain Monte Carlo (MCMC) methods. However, it is well-known that fitting SV models using MCMC is not always straight-forward. One method that can improve over MCMC is SMC samplers ([14]), but in that ap...

متن کامل

Marginal sequential Monte Carlo for doubly intractable models

Bayesian inference for models that have an intractable partition function is known as a doubly intractable problem, where standard Monte Carlo methods are not applicable. The past decade has seen the development of auxiliary variable Monte Carlo techniques (Møller et al., 2006; Murray et al., 2006) for tackling this problem; these approaches being members of the more general class of pseudo-mar...

متن کامل

Approximate Bayesian Computation for Source Term Estimation

Bayesian inference is a vital tool for consistent manipulation of the uncertainty that is present in many military scenarios. However, in some highly complex environments, it is hard to write down an analytic form for the likelihood function that underlies Bayesian inference. Approximate Bayesian computation (ABC) algorithms address this difficulty by enabling one to proceed without analyticall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007